Mechanobiology of fibrotic-related diseases

Fibrotic diseases and tumor-associated fibrosis constitute a worldwide health problem that, together, are responsible for enormous morbidity and mortality. Approximately 1 in 8 people worldwide suffer from fibrotic-related diseases. Fibrotic diseases encompass a broad spectrum of clinical disorders, including systemic sclerosis, idiopathic pulmonary fibrosis, macular degeneration, chronic kidney disease, liver cirrhosis, and cardiac fibrosis. Similar to fibrotic diseases originating following tissue injury, fibrosis also occurs with tumor formation in pancreatic cancer and hepatocellular carcinoma. 

Approximately 1 in 8 people worldwide suffer from fibrotic-related diseases.

Despite the remarkable difference in clinical manifestations and disease-causing mechanisms, these disorders share a similar uncontrolled and progressive accumulation of fibrotic tissue in affected organs, causing their dysfunction and failure. 

Recent evidence confirms that extracellular matrix stiffening plays a significant role in the initiation and progression of fibrosis. Matrix stiffness increases considerably during tissue fibrosis. For example, the stiffness of the skin, lung and liver increases from 0.5 to 1 kPa in homeostasis up to 25-100 kPa in experimental models of fibrosis. Moreover, matrix stiffening in response to tissue injury or tumours promotes mechano-activation of myofibroblasts (activated form of fibroblast), which are responsible for replacing normal tissue with non-functional fibrotic tissue.  

Advanced tissue repair and fibrosis studies have revealed how mechanical environments are formed in normal, injured, repairing and fibrotic tissues. Optics11 Life Nanoindenters emerge as a powerful method of mechanical characterization of fibrotic tissues. The devices can identify alterations in the structural characteristics of tissues and early signs for diagnosing diseases. Translating these insights into clinical and therapeutic interventions could enable new approaches to treat fibrotic tissue remodelling. 



[1] Rosenbloom J et al., (2017) Human fibrotic diseases: Current challenges in fibrosis research. In: SpringerLink.

[2] Tschumperlin DJ et al., (2020) Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. In: Elsevier.

[3] Tschumperlin DJ et al., (2018) Mechanosensing and fibrosis. In: The Journal of Clinical Investigation.

[4] Kuehlmann B et al., (2020) Mechanotransduction in Wound Healing and Fibrosis. In: Journal of Clinical Medicine.

[5] Santos A et al., (2018) Matrix Stiffness: the Conductor of Organ Fibrosis. In: SpringerLink. http://10.1007/s11926-018-0710-z




Check how our products can help you unravel the mechanobiology of soft matter.
Optics11 Life

Interested in mechanobiology?

Discover latest

At the Terasaki Innovation Summit 2024, we will present the Pavone, designed for translational research….

What if the future of regenerative medicine hinges on our ability to manipulate surface stiffness,…

The secret sauce to deciphering one of life’s mind-boggling complexities lies in creating a miniature…

Boston, MA, September 26th, 2023 Optics11 Life Inc., an innovator in the development of user-friendly,…


Whether your focus lies on mechanical measurements and characterization at the cell scale, or you work with muscle tissues, our platforms offer you precise, fast, and accurate outcomes. Discover more about how our products can help you accelerate and achieve your research goals. 


We are a growing team of 60+ passionate people, headquartered in Amsterdam, the Netherlands. Learn more about our journey so far, meet our team of professionals, and our career opportunities. 


From initial interest to full-scale implementation, and throughout the entire lifecycle of our instruments, we offer our customers a dedicated and customized experience. We focus on optimizing the functionality and operation of our instruments, to ensure peak efficiency, enhancing their research productivity.



Quote Form

Get THE latest insights

Product Inquiry